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ABSTRACT

Subject to certain constraints, the equilibrium thermodynamics of a mixture of ionizing gas, blackbody
radiation, and homogeneous turbulence is worked out in some detail. Specific heats and adiabatic exponents
(Chandrasekhar’s gammas) are calculated. The adiabatic exponents show only a weak dependence on the
turbulent pressure and the turbulent energy. This dependence is weakest under conditions of strong partial
ionization of the gas, or when the relative pressure due to radiation is very high. Analytic expressions and
numerical examples are both given, and possible astrophysical applications are briefly discussed.

Subject headings: atomic processes — equation of state — plasmas — turbulence

1. INTRODUCTION

Turbulence is a very common phenomenon in nature.
Astrophysical systems that are strongly turbulent include
convectively unstable planetary atmospheres, stellar enve-
lopes and cores, stellar and galactic accretion disks and jets,
and interstellar clouds, among many other objects in which
fluid flows are of sufficiently low viscosity to be called turbu-
lent. Very often, the turbulent velocities become so large in
these objects that the turbulent pressure due to the Reynolds
stresses must be expressly included in the equations of fluid
motion.

In the simplest situation, consisting of a system in approx-
imate hydrostatic equilibrium where one ignores all time
derivatives, microscopic viscosities, buoyancy forces, rota-
tion, and magnetic fields, the momentum equation becomes
(Tennekes & Lumley 1972, pp. 32, 98)
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Here ui represents the turbulent velocity fluctuation,
gi ¼ ð0; 0; gÞ is the gravitational acceleration, �ij is Kroneck-
er’s delta, � is the mass density, and p is the sum of the ther-
mal gas pressure Pgas and the radiation pressure Prad.
Taking a horizontal mean of equation (1) and considering
the vertical direction only, we have
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If now we write w2 ¼ Cv2turb, then

dP=dz ¼ �g� ; ð3Þ
where

P ¼ Pgas þ Prad þ Pturb ð4Þ
and

Pturb ¼ Cv2turb� : ð5Þ
In the case of isotropic turbulence, C ¼ 1=3. Note that
equation (3) is just the familiar form of the equation of
hydrostatic equilibrium.

Astrophysicists, however, need some sort of temporal
treatment of the turbulent pressure in order to discuss
stability problems. Their obvious choice is either to treat the
turbulent pressure, properly, as part of the hydrodynamics

or to treat it, in some approximate fashion, as part of the
thermodynamics. A hydrodynamical treatment is analyti-
cally impossible and numerically impractical (owing to the
many different length and timescales involved). As a rough
remedy, therefore, a thermodynamical treatment based on
some idealized, simple phenomenological model would
seem to be useful. We could assume, for example, a ‘‘ gas ’’
of turbulent eddies that move independently, are in thermal
equilibrium, do not interact with the gas and radiation, and
are neither created nor destroyed during the course of an
adiabatic (rapid) perturbation. Within a sizable volume,
which is nevertheless a small part of the overall astrophysi-
cal system and can be considered to be a closed subsystem,
the turbulent eddies exhibit a spectrum of sizes; however,
the larger, more energetic ones have longer lifetimes, ration-
alizing our assumption about their approximate integrity.
Because large astrophysical systems like stars and interstel-
lar clouds have long lives compared to the convective turn-
over times of turbulent eddies, the eddies may be assumed
to be in some kind of local thermodynamic equilibrium
among themselves and with the gas and radiation, even if
they are created and destroyed rapidly. Of course, turbulent
eddies are strongly correlated and interact nonlinearly on
various timescales, as they cascade upward and downward
in energy and produce Reynolds stresses (tensors) that are
not conventional pressures (scalars). Therefore, we could
alternatively dispense with any model, but simply fit the
data from approximate numerical simulations of astrophys-
ical turbulence to formal thermodynamic expressions for
turbulent pressure and turbulent energy. Since the necessary
simulations are not yet available and our physical picture of
turbulence is extremely crude, we here take the coefficients
and exponents in the thermodynamic expressions to be free
parameters.

The thermodynamic constraints on the free parameters
are described in x 2. Next, the important thermodynamic
quantities, such as the specific heats and the adiabatic expo-
nents, are derived analytically for a mixture of ideal gas,
blackbody radiation, and homogenous turbulence in x 3.
The gas is allowed to have a ratio of specific heats other than
5/3 in order to mimic either a condition of partial ionization
or some other nonideal property; illustrations of the ther-
modynamic effects of turbulence are then presented on the
basis of this simple assumption. In x 4, the rigorously correct
expressions are worked out for the case in which the gas is
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partially ionized. Our main results and some suggestions for
potential applications are discussed in x 5.

2. THERMODYNAMIC PRELIMINARIES

2.1. Constraints

In classical thermodynamics, the thermodynamic identity
is given by (Landau &Lifshitz 1958)

dQ ¼ T dS ¼ dE þ PdV ; ð6Þ

where T is temperature, S is entropy, Q is quantity of heat,
E is specific internal energy, and V ¼ 1=� is specific volume.
Since E and P can be expressed in terms of any two inde-
pendent thermodynamic variables, we choose to write
E ¼ EðT ;VÞ and P ¼ PðT ;VÞ. Then another well-known
thermodynamic formula follows:

ð@E=@VÞT ¼ Tð@P=@TÞV � P : ð7Þ

Although ionization chemical potentials have been ignored
in equation (6) because they are not needed for xx 2 and 3,
they will be included in the more exact calculations of x 4,
which explicitly take into account partial ionization of the
gas.

If now we utilize the pressure exponents defined by Cox &
Giuli (1968),

�T ¼ ð@ lnP=@ lnTÞV ; �V ¼ ð@ lnP=@ lnVÞT ; ð8Þ

and if we require for adiabatic processes that

E ¼ n0PV ; ð9Þ

where n0 is a constant, then equation (7) can be rewritten as

�V ¼ ð�T � 1Þ=n0 � 1 : ð10Þ

Note that the enthalpy is here just H ¼ E þ PV ¼
Eðn0 þ 1Þ=n0. The important point to recognize is that in
order to satisfy the thermodynamic identity the possible
values of the pressure exponents are not free, but are
constrained by equation (10).

To take the example of a monatomic ideal gas with gas
constantR ¼ cP � cV (which is the difference of specific heat
at constant pressure cP and specific heat at constant volume
cV ) one has

Pgas ¼ RT=V ; Egas ¼ cVT ; ð11Þ

and therefore �T ¼ 1 and �V ¼ �1, which satisfies equation
(10) for any n0 ¼ cV=R. Likewise, for blackbody radiation
with radiation density constant a, one has

Prad ¼ ð1=3ÞaT4 ; Erad ¼ aT4V ; ð12Þ

which yields �T ¼ 4, �V ¼ 0, and n0 ¼ 3, again satisfying
equation (10). These well-known results are no accident, as
Joule’s experiments on nearly ideal gases originally led to
equation (6), while Boltzmann found an expression for
Erad by integrating equation (7) through the use of the
already known equation of state for blackbody radiation
(Chandrasekhar 1939).

Since the various pressures in strictly noninteracting sys-
tems are additive, equation (10) applies separately to each
component of the total pressure of a fluid mixture consisting
of gas, radiation, and turbulence in thermodynamic equili-

brium. For the specific case of turbulence, we have

Pturb ¼ Cv2turb=V ; Eturb ¼ 1
2 v

2
turb : ð13Þ

Consequently, n0 ¼ 1=ð2CÞ. Defining the turbulent velocity
exponents,

�T ¼ ð@ ln vturb=@ lnTÞV ; �V ¼ ð@ ln vturb=@ lnVÞT ;

ð14Þ

we presume that they must satisfy the relation (10), repre-
sented here by

�V ¼ Cð2�T � 1Þ ; ð15Þ

in order for us to be able to treat the turbulent pressure ther-
modynamically as being part of the scalar total pressure.

If we assume that turbulent elements behave like an ideal
gas ðv2turb / TÞ, then �T ¼ 1=2 and �V ¼ 0, with the result
that equation (15) holds for any value ofC. Another instruc-
tive example applies to a polytropic equation of state,
Pturb / ��

0
, in which case n0 ¼ ð�0 � 1Þ�1; �T ¼ 0, and

�V ¼ �C. Thus, for isotropic turbulence, we have C ¼ 1=3,
n0 ¼ 3=2, and �0 ¼ 5=3, which also represents the polytropic
relation for a monatomic ideal gas with a ratio of specific
heats cP=cV ¼ 5=3. If, on the other hand, C ¼ 1=6, we have
n0 ¼ 3 and �0 ¼ 4=3, which represents, similarly, the case of
pure blackbody radiation. Although the case of C ¼ 1=6
violates our initial assumption of isotropy for all the constit-
uents of the medium, we simply invoke the spirit of our
crude approximation that the turbulent pressure may be
roughly represented thermodynamically as a part of the sca-
lar total pressure. Note that equation (15) cannot be satis-
fied when either Pturb or vturb is assumed to be constant.
More generally, equation (10) shows that a constant pres-
sure is not a thermodynamically viable equation of state for
an adiabatic process. (This is not the same thing as holding
the pressure constant during an adiabatic process.)

Lastly, since internal energies are also additive, we have

E ¼ Egas þ Erad þ Eturb : ð16Þ

2.2. Specific Heats and Adiabatic Exponents

The thermodynamic quantities of greatest practical use
for applications in astrophysics and allied fields are the spe-
cific heats and the adiabatic exponents. These are defined by

CV ¼ ðdQ=dTÞV ; CP ¼ ðdQ=dTÞP ; ð17Þ

and

�1 ¼ �ðd lnP=d lnVÞS ; ð18Þ

�2=ð�2 � 1Þ ¼ ðd lnP=d lnTÞS ; ð19Þ

�3 � 1 ¼ �ðd lnT=d lnVÞS : ð20Þ

From the definitions of the three gammas it follows gener-
ally that

�1=ð�3 � 1Þ ¼ �2=ð�2 � 1Þ : ð21Þ

This suggests that we can write the gammas, for expository
convenience, as simple ratios:

�1 ¼ A=D; �2=ð�2 � 1Þ ¼ A=B ;

�3 � 1 ¼ B=D : ð22Þ
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The notation for the gammas is due to Chandrasekhar
(1939), who derived expressions for them in the case of a
mixture of ideal gas and radiation. Eddington (1918, 1926),
however, was the first author to work out the detailed
expressions for �1 and �3 (called by him � and �0). The gam-
mas appear most often in problems of mechanical instabil-
ity, �1 being associated primarily with dynamical
instability, �2 with convective instability, and �3 with pulsa-
tional instability.

3. IDEAL GAS, RADIATION, AND TURBULENCE

3.1. Analytic Results

We follow Chandrasekhar (1939) in deriving expressions
for the various thermodynamic quantities, here adding a
contribution from homogeneous turbulence to the mixture
of gas (with a ratio of specific heats � ¼ cP=cV ) and black-
body radiation. The total pressure P is given by equations
(4) and (11)–(13), while the total internal energy E is
expressed by equations (11)–(13) and (16).

The turbulent velocity exponents, �T and �V , appear in
the final expressions. Eliminating �V with the help of the
constraint (15), we find

�T ¼ 4� 3� þ 2�T�

1þ �
; ð23Þ

�V ¼ � � þ ð1þ 2C � 4C�TÞ�
1þ �

; ð24Þ

CV ¼ cV
n�

½12þ ðn� 12Þ� þ C�1�T�� ; ð25Þ

CP � CV ¼ cP � cV
n�

ð4� 3� þ 2�T�Þ2

� þ ð1þ 2C � 4C�TÞ�

" #
: ð26Þ

Here we have used the definition of the gas polytropic index
n ¼ ð� � 1Þ�1 and the two additional definitions

� ¼ Pgas=ðPrad þ PgasÞ; � ¼ Pturb=ðPrad þ PgasÞ : ð27Þ

For an ideal monatomic gas, cV ¼ 3
2Nk and cP ¼ 5

2Nk,
where N is the number of free particles per unit mass and k
is Boltzmann’s constant. If �T is positive, CV always
increases when turbulent pressure and turbulent energy are
included, butCP may either increase or decrease.

For the adiabatic exponents, we obtain their three con-
stituent factorsA, B, andD as

A ¼ 16� 12� þ ðn� 3Þ�2 þ ½ð1þ 2CÞð12þ n� � 12�Þ
þ ð16� 12� þ C�1� � 4Cn� þ 48C� � 48CÞ�T ��
þ ð1þ 2CÞC�1�T�

2 ; ð28Þ

B ¼ ð4� 3� þ 2�T�Þð1þ �Þ ; ð29Þ

D ¼ ½12þ ðn� 12Þ� þ C�1�T��ð1þ �Þ : ð30Þ

Notice that in the absence of turbulence, the expressions
for the specific heats and for the three gammas reduce to

those of Chandrasekhar. In this case, one finds the limits

for � ¼ 1 : �1 ¼ �2 ¼ �3 ¼ � ; ð31Þ

for � ¼ 0 or � ¼ 4=3 : �1 ¼ �2 ¼ �3 ¼ 4=3 : ð32Þ
Also in this case, the derivatives of all the gammas with
respect to � are 0 when � ¼ 4=3; accordingly, the gammas
increase with increasing � if � > 4=3, and decrease with
increasing � if � < 4=3.

Several special limiting cases should be noted when turbu-
lence is included, because they also yield very simple expres-
sions for the gammas:

for � ¼ 1; C ¼ ð� � 1Þ=2 : �1 ¼ �2 ¼ �3 ¼ �; ð33Þ

for � ¼ 4=3; C ¼ 1=6 : �1 ¼ �2 ¼ �3 ¼ 4=3 ; ð34Þ

for � ¼ 1 : �1 ¼ ð� þ �Þ=ð1þ �Þ; �2 ¼ 1; �3 ¼ 1 ; ð35Þ

for � ¼ 1 : �1 ¼ �2 ¼ �3 ¼ 1þ 2C : ð36Þ

As a practical matter, the case �41 is not physically very
realistic. There must exist some limit on how far the turbu-
lent pressure can exceed gas pressure, if one makes the rea-
sonable assumption that the turbulent velocity cannot
greatly surpass the adiabatic (Laplacian) velocity of sound.
The latter quantity is given by

vsound ¼ ð@P=@�Þ1=2S ¼ ð�1P=�Þ1=2 ð37Þ
for nonrelativistic velocities. The condition that vturb �
vsound imposes the restriction Pturb=P � C�1 or

� � C�1=ð1� C�1Þ ; ð38Þ

where the upper limit on � is clearly of order unity.
If, however, the gas density, �, becomes comparatively

low, as it is when the gas is immersed in a strong radiation
field, vsound may approach the speed of light, c. In this
extremely relativistic case, vsound ! c=

ffiffiffi
3

p
(Landau & Lif-

shitz 1959). Since

�=� ¼ Pturb=Pgas ¼ ðCv2turb=RTÞ ; ð39Þ

we can assign a less restrictive upper limit on � for any tur-
bulent velocity:

� � ðc2=3RTÞ� : ð40Þ

Although � can apparently grow indefinitely as T ! 0,
degeneracy must occur at some point in actual practice as
the temperature drops.

More realistically, it is unlikely that the turbulent velocity
would ever significantly exceed the thermal velocity of the
gas. Then, instead of equation (38) or (40), we should have

� � � : ð41Þ

For later reference, we define f ¼ �=� and suppose that
f � 1.

Since the turbulent pressure, like the gas pressure, is pro-
portional to the mass density, the two pressures must
decline together when � becomes very small. Equations (40)
and (41) both show that � ! 0 as � ! 0.

3.2. Numerical Results

Some numerical examples will now be given. As the three
gammas lie close together in value under most conditions,
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we choose �3 for illustration, following the example of Cox
& Giuli (1968). It happens that �3 has also the simplest
expression,

�3 ¼
16ð� � 1Þ þ ð16� 15�Þ� þ ð� � 1Þð1þ 2CÞC�1�T�

12ð� � 1Þ þ ð13� 12�Þ� þ ð� � 1ÞC�1�T�
:

ð42Þ

First, we note that if �T ¼ 0 this expression formally
reduces to the same expression that holds in the absence of
turbulence (although this would not be true for �1 and �2).
Second, there exists a critical value of � above (below) which
�3 increases (decreases) with increasing �. If we set � ¼ f �
with f constant, then

�crit ¼
4þ ð6� C�1Þ�Tf

3þ ð6� C�1Þ�Tf
: ð43Þ

If, on other hand, � instead of f is held constant,

�crit ¼
16þ ð26� 3C�1Þ�T�

12þ ð24� 3C�1Þ�T�
: ð44Þ

Third, there is also a critical value of �, above (below) which
�3 decreases (increases) with increasing � or f:

�crit ¼
4ð6C � 1Þð� � 1Þ

3ð8C � 1Þð� � 1Þ � 2C
: ð45Þ

Since the physically possible values of � fall in the range
0 � � � 1, it is necessary that � > 1þ 2C in order to have
�3 decrease. Under most conditions, if C ¼ 1=3, �3

increases.
Since � must go to 0 as � does, we adopt for illustration

the case of constant f. Figure 1 displays �3 as a function of
�, based on the use of �T ¼ 1=2 and C ¼ 1=3. With these
two particular values of the constants, �crit ¼ ð8þ 3f Þ=
ð6þ 3f Þ. Because �crit ¼ 1 for � ¼ 5=3, �3 must increase
with f for any realistic ratio of specific heats of the gas
ð� � 5=3Þ. Nevertheless, the derived dependence of �3 on f
appears to be rather weak and becomes negligible when �

drops to very small values. It is also negligible when � is very
small.

Figure 2 shows a similar plot, comparing C ¼ 1=3 and
C ¼ 1=6 for f ¼ 1. The reduced value of C lowers �3 every-
where, and has associated with it �crit ¼ 4=3 for all values of
f, and �crit ¼ 0 for all values of �. The ‘‘ true ’’ value of C is
not accurately known, however. Isotropic turbulence
implies C ¼ 1=3, which is adopted in most stellar convec-
tion theories (e.g., Gabriel et al. 1975; Kuhfuss 1986; Xiong
1989; Gehmeyr 1992; Yecko, Kolláth, & Buchler 1998).
Older studies sometimes assumed C ¼ 1=2 (Unsöld 1955),
although Stellingwerf (1982) adopted C ¼ 1. Henyey, Var-
dya, & Bodenheimer (1965) recommended 1 � C � �=2;
according to the standard definition of the average turbu-
lent velocity (x 1), however, it is necessary that C � 1. In
Gough’s (1977) theory, C is a complicated function whose
approximate numerical value was not evaluated. The semi-
analytic turbulence model of Canuto & Mazzitelli (1991),
which approximated the full spectrum of eddy sizes, yields
C ¼ 0:21–0.23. Three-dimensional numerical simulations
of solar convection give C � 1=2 in the adiabatic region (Li
et al. 2002).

4. IONIZING GAS, RADIATION, AND TURBULENCE

There have been many published studies of the thermody-
namics of a mixture of ionizing monatomic gas and radia-
tion. The first accurate studies were made by Underhill
(1949) and Krishna Swamy (1961). Some of the other inves-
tigations have recently been reviewed by Lobel (2001). To
include homogeneous turbulence, we here utilize the analyt-
ical approach of Cox&Giuli (1968) with the addition of tur-
bulent pressure and turbulent energy as given by equations
(13).

Our adopted approach applies, strictly speaking, to a
highly diffuse medium in which only one abundant element
(hydrogen or helium) is undergoing thermal ionization at a
time. This assumption is adequate for most cases of astro-
physical interest in which the turbulent pressure becomes of
any real significance (e.g., in giant star envelopes or in accre-
tion disks). Next, only two stages of ionization of the ioniz-
ing element are treated as being simultaneously in progress.
This, too, is nearly always a good assumption.

Fig. 1.—Third generalized adiabatic exponent, �3, as a function of the
ratio of gas pressure to the sum of gas pressure and radiation pressure, �.
The ratio of specific heats of the gas is �. Turbulent pressure is includedwith
the assigned parameters �T ¼ 1=2 andC ¼ 1=3 for various strength param-
eters f.

Fig. 2.—Same as Fig. 1, but for f ¼ 1 with two assignments of the aniso-
tropy parameterC. The isotropic case hasC ¼ 1=3.
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We define the following four dimensionless quantities, in
Cox & Giuli’s notation: �, the number of atoms and ions of
the ionizing element, divided by the total number, N, of
atoms and ions; y, the number of atoms of the ionizing ele-
ment that have lost r electrons, divided by the total number
of atoms and ions of that element; y, the number of free ion-
ization electrons, divided by the total number, N, of atoms
and ions; and the quantity

� ¼ 2yyð1� yÞ�
yð1þ yÞ þ yð1� yÞ� : ð46Þ

The ionization potential, I, is the energy required to remove
the rth electron from the ground state of an ðr� 1Þ times
ionized atom. Assuming chemical and thermal equilibrium
and neglecting excitation energy, the Saha ionization equa-
tion can be used to derive y from the ionization potential,
the partition functions (taken here to be constants), the tem-
perature, and the electron pressure. The thermal kinetic
energy per free particle in the ion and electron plasma is
taken to be 3

2 kT .
With these definitions, we readily find

�T ¼ 4� 3� þ ��

2þ �

3

2
þ I

kT

� �
þ 2�T�

� 	
1

1þ �
; ð47Þ

�V ¼ � 2�

2þ �
þ ð1þ 2C � 4C�TÞ�

� 	
1

1þ �
; ð48Þ

CV ¼ Nkð1þ yÞ
�

� 12� 21�

2
þ ��

2þ �

3

2
þ I

kT

� �2

þC�1�T�

" #
; ð49Þ

CP � CV ¼ �ð�1=�V þ 1ÞCV : ð50Þ

After considerably more algebra, we get also

A ¼ 32� 24� � 3�2 þ �2� 4
1� �

�

� �
þ 5

2
þ I

kT

� �� 	2

þ 2�T� 16þ �ðC�1 � 12Þ þ 2��
4

�
þ I

kT
� 3

2

� �� 	
 �

þ ð1þ 2C � 4C�T Þ�


3ð8� 7�Þ

þ �� 12
1� �

�

� �
þ 3

2
þ I

kT

� �
5

2
þ I

kT

� �
� I

kT

� 	�
þ ð1þ 2CÞC�1�T�

2ð2þ �Þ ; ð51Þ

B ¼


2ð4� 3�Þ þ �� 4

1� �

�

� �
þ 5

2
þ I

kT

� �� 	

þ 2ð2þ �Þ�T�

�
ð1þ �Þ ; ð52Þ

D ¼


3ð8� 7�Þ þ ��

� 12
1� �

�

� �
þ 3

2
þ I

kT

� �
5

2
þ I

kT

� �
� I

kT

� 	

þ C�1�T�ð2þ �Þ
�
ð1þ �Þ : ð53Þ

These expressions reduce to those of Cox & Giuli (1968) for
the case of no turbulence ð� ¼ 0Þ. In the case of a neutral or
a fully ionized gas ð� ¼ 0Þ, the expressions we derived in
x 3.1 are recovered if in those expressions � is set to 5/3 and
N is identified as the total number of free particles per unit
mass. Cox & Giuli have shown, in general, that
0 � � � 1=2. Partial ionization always lowers the three
gammas in a dramatic way that is approximately mimicked
by taking � < 5=3 in the expressions for the fully neutral (or
the fully ionized) case.

5. DISCUSSION

What are the conditions under which the turbulent pres-
sure may be treated, at least formally, as a thermodynamic
variable? We have seen that a certain relation among the
constants C, �T , and �V must be satisfied (eq. [15]). Physi-
cally, can this condition ever be realized? If turbulence is fast
and homogenous, it probably behaves much like an ideal
gas, the kinetic energy of the turbulent eddies being linearly
combinable with the thermal kinetic energy of the gas par-
ticles of which the eddies are composed. Thus, E ¼ 1

2
ðv2gas þ v2turbÞ. Therefore, from a thermodynamic point of
view, we would expect our approach to improve as an
approximation to the true situation if vturb is of the order of
vgas and if the turbulent eddies are small and isotropic. Of
course, a problem remains of the proper choices of C and
�T . Plausible choices, such as �T ¼ 1=2 or 0, with C ¼ 1=3,
lead to results that do not greatly differ from each other.

If, however, the turbulent timescale is long and the main
flux-carrying eddies are large, anisotropy of the turbulence
would doubtless also be large. Our approach would then
break down for a number of reasons. In this extreme case,
the turbulent pressure can only react very slowly to rapid
expansions and contractions of the gas. If the turbulent
velocity or turbulent pressure remains approximately con-
stant in time, the lifting effect of the turbulent pressure gra-
dient would act formally to reduce the effective gravity
rather than to modify the spatial gradient of gas pressure
and radiation pressure, and so equation (3) should then be
reorganized to read: dp=dz ¼ �g�� dPturb=dz. The turbu-
lent pressure term dPturb=dz would therefore have to be
treated hydrodynamically in some way, or else one might
simply set vturb or Pturb to be constant in time. In either case,
standard thermodynamics could still apply to the gas and
radiation fields, and so the traditional forms of the gammas
would remain the relevant ones.

In giant star envelopes, turbulent velocities in the ioniza-
tion zones attain or even exceed sound speed. The approxi-
mate effect of turbulence on the envelope structure may then
be treated by the methods outlined in this paper. In cool
giants, � � 1 and if C � 1=3 turbulence would not be
expected to have a large effect in layers well outside the ion-
ization zones of hydrogen and helium as far as the stability
criteria (which depend on the three gammas) are concerned.
Deep inside the ionization zones where the three gammas lie
close to 1, turbulence again should be thermodynamically
(but not hydrodynamically) ineffectual. Its overall influence,
therefore, might be relatively slight in cool giants. In hot
supergiant stars, � � 0 and, because of this circumstance,
turbulence ought not to have a large influence on the stabil-
ity properties of any layers of these stars. Obviously,
detailed numerical calculations need to be made in order
to check these predictions, especially since the turbulent
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pressure must affect the star’s equilibrium structure through
the equation of state and the equation of hydrostatic equili-
brium. In hot supergiant stars, however, the low value of �
means that the structure is already largely determined by
radiation pressure; therefore, any extra contribution from
turbulent pressure is unlikely to amount to much. This
would not necessarily be the case for cool giants, however
(Stellingwerf 1976; Jiang &Huang 1997).

Jiang & Huang (1997) and Huang & Yu (1998) also have
considered the effects of turbulence on thermodynamic
quantities. However, they have adopted the extreme (and
inconsistent) values C ¼ 1 and n0 ¼ 3, and have ignored the
constraint given by equation (10) that must be fulfilled in
order to satisfy the thermodynamic identity. In addition,
they have calculated only one of the three gammas and only
one of the two specific heats.

An alternative approach to turbulence that has been uti-
lized by Li et al. (2002) is to treat it in the manner of a mag-

netic field, so that the turbulent energy per unit mass
becomes a new state variable that is abruptly perturbed
from one constant value to another. In this case, the ther-
modynamic identity changes to a nonstandard form, differ-
ing from equation (6) by displaying p instead of P. The
results that follow would obviously differ from our present
ones. It might even be possible to treat turbulence by using a
chemical potential. However, we believe that our present
results can illustrate, roughly, the magnitude and direction
of changes in thermodynamic quantities that turbulence
causes under specified conditions.

Thanks are extended to V. M. Canuto andM. S. Dubovi-
kov for enlightening discussions of turbulence theory, but
they are in no way responsible for any shortcomings of this
paper. The referee, Frank Robinson, pointed out Huang’s
closely related investigations.

REFERENCES

Canuto, V.M., &Mazzitelli, I. 1991, ApJ, 370, 295
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure
(Chicago: Univ. Chicago Press)

Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure, Vol. 1 (New
York: Gordon&Breach)

Eddington, A. S. 1918,MNRAS, 79, 2
———. 1926, The Internal Constitution of the Stars (Cambridge:
Cambridge Univ. Press)

Gabriel,M., Scuflaire, R., Noels, A., & Boury, A. 1975, A&A, 40, 33
Gehmeyr,M. 1992, ApJ, 399, 265
Gough, D. O. 1977, ApJ, 214, 196
Henyey, L., Vardya,M. S., & Bodenheimer, P. 1965, ApJ, 142, 841
Huang, R. Q., & Yu, K. N. 1998, Stellar Astrophysics (Singapore:
Springer)

Jiang, S. Y., &Huang, R. Q. 1997, A&A, 317, 114
Krishna Swamy, K. S. 1961, ApJ, 134, 1017

Kuhfuss, R. 1986, A&A, 160, 116
Landau, L. D., & Lifshitz, E. M. 1958, Statistical Physics (London:
Pergamon)

———. 1959, FluidMechanics (London: Pergamon)
Li, L. H., Robinson, F. J., Demarque, P., Sofia, S., &Guenther, D. B. 2002,
ApJ, 567, 1192

Lobel, A. 2001, ApJ, 558, 780
Stellingwerf, R. F. 1976, ApJ, 206, 543
———. 1982, ApJ, 262, 330
Tennekes, H., & Lumley, J. L. 1972, A First Course in Turbulence
(Cambridge:MIT Press)

Underhill, A. B. 1949,MNRAS, 109, 562
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